Universidad

Politécnica EtSit

escuela técnica superior de

de Ca I’tagena ingenieria de telecomunicacian

TEORIA DE REDES DE TELECOMUNICACIONES

GRADO EN INGENIERIA TELEMATICA
(GRADO EN INGENIERIA EN SISTEMAS DE TELECOMUNICACION

CURSO 2015-2016

Lab work #7. Modular capacities and routing
optimization using a destination-link formulation

(1 session)

Author:

Pablo Pavon Marino

1 Objectives

The goals of this lab work are:

1. Create Net2Plan algorithms that solve a CFA problem, where the link capacities and the rout-
ing are jointly optimized, solving a destination-link formulation of the problem using the Java
Optimization Modeler (JOM) library.

2. Gain experience with the different forms of writing optimization problems in JOM, making benefit
of its vectorial representation capabilities.

3. Explore the potential of the matricial representation of the routing constraints in JOM and
Net2Plan.

2 Duration

This lab work is designed for one session of two hours.

3 Evaluation

This lab work has been designed to guide the students in their learning of Net2Plan. The annotations
the students make in this document are for their use when studying the course, and do not have to be
delivered to the teacher for evaluation.

4 Documentation

The resources needed for this lab work are:

e JOM library documentation (see http://www.net2plan.com/jom).
e Net2Plan tool and their documentation (see http://www.net2plan.com/).

e Instructions in this wording.

5 Previous work before coming to the lab

e Read Section 4.4 of [1], and the lecture notes regarding destiation-link formulations.

e Refresh your reading in the JOM documentation in http://www.net2plan.com/jom, in particu-
lar, how vector of variables and constraints are handled.

6 Joint routing and capacity allocation with modular capacities

Let G(NV, €) be a network, where the set of nodes N and the set of links £ are given. The offered traffic
is composed of a set of unicast demands D, and the offered traffic hy for each demand d € D is known.

The network is based on equipment that forwards the traffic according to its destination node. The
link capacities are restricted to be integer multiples of C' traffic units.

We are interested in creating a Net2Plan algorithm that finds the destination-based routing and
the link capacities that minimize the total network cost, computed as the number of modules of C'
capacity units to install in the network. The formulation to solve with JOM is defined below:

e Input parameters (known constants):

— N: Set of network nodes.

— &: Set of network links.

— D: Set of offered unicast demands.

— hg,d € D: Offered traffic of a demand d.

— (" Traffic units of one capacity module.
e Decision variables:

— Qe, e € & Number of capacity modules to install in link e.

— Tye,t € N, e € E: Amount of traffic targeted to destination node ¢, that traverses link e.

e Formulation:

min Z ae, subject to: (1a)
B if t
Z Tte — Z xte:{ tln#. , Vn,te N (1b)
€t (n) e€s—(n) = 2 b i n =1t
> we<al, Vee& (1c)
t
a. €{0,1,2,...}, Veeé& (1d)
Tye > 0, Vte/\/,eeé’ (1e)

The objective function (1a) minimizes the total number of capacity modules (our estimation of the
network cost). Constraints (1b) are the standard flow conservation constraints for the destination-link
formulation. Constraints (1c) mean that for each link, the traffic carried in the link is less or equal
than its capacity (and thus, no link is oversubscribed). Finally, (1de) forbid buying a negative amount
of capacity modules for a link, or carrying a negative amount of traffic, since this has no physical
meaning.

7 Net2Plan algorithm

The student should develop a Net2Plan algorithm solving problem (1) following the next steps:

1. Copy the AlgorithmTemplate. java file in Aula Virtual and rename it as DestinationLinkModularCapacitie

2. The algorithm should have one input parameter named capacityModule, with default value 10,
and description Size of the capacity module measured in the same units as the traffic. This is the
C' constant in (1).

10.

11.

12.

This algorithm will work whatever is the routing type of the input design. We just want to remove
any carried routing of the network (routes in source routing, or forwarding rules in hop-by-hop
routing). We can do that calling to the method removeAllUnicastRoutingInformation of the
input NetPlan object.

Compute the traffic matrix (with as many rows and columns as nodes) from the offered demands,
using the method

getMatrixNode2NodeOffered Traffic

of the the NetPlan class. Note that a DoubleMatrix2D object is returned. It can be converted
into a double [][] using the toArray method of DoubleMatrix2D.

Create an object of the type OptimizationProblem (e.g. of name op).

Add the problem decision variables, with name x_te: one variable per node and per link. The
minimum value of the variables is set to zero, the maximum to Double.MAX_VALUE.

Add the problem decision variables, with name a_e: one variable per link. The minimum value
of the variables is set to zero, the maximum to Integer .MAX_VALUE, the variables are restricted
to be integer.

Set the problem objective function using the JOM function sum.

Use two nested for loops to add the flow conservation constraints. Outer for loop iterates in
the nodes of which we are making the conservation (n in (1b)), and the inner in the destination
nodes (¢ in (1)b). For adding the conservation constraint of a node n and destination node t:

e Set the JOM input parameters:

— deltaPlus with the indexes of the output links of the current node n. For this, use the
method getOutgoingLinks of the node object to get the output links, and the method
NetPlan.getIndezes to convert the collection of links to their indexes.

— deltaMinus with the indexes of the incoming links of the current node n. For this, use
the method getIncomingLinks of the node object to get the incoming links, and the
method NetPlan.getIndexes to convert the collection of links to their indexes.

— h_nt with the coordinate of the traffic matrix with the traffic from node n to node t.

— h_t input (hy =), hyt) can be easily generated using the method:

getVectorNodeEgressUnicastTraffic

of the NetPlan class, that returns the total offered traffic targeted to a given node.

e Set the constraint using the function sum, over x_te, but restricting the sum to the elements
in row t and the columns in deltaPlus or deltaMinus.

Add the JOM input parameter C, with the value given by the algorithm input parameter
capacityModule (the C constant in (1)).

Use a for loop with one iteration per link, to add the constraints (1c). One constraint is added
inside each iteration of the loop. For adding the constraint of a link e use the function sum, over
all the desintation nodes t (using the JOM keyword all in the destination coordinate), and the
link of index e.

Call the solver to find a numerical solution. Use the option maxSolverTimeInSeconds to set the
maximum solver time to 10 seconds. The solver will return the best solution found so far after 10
seconds, if an optimum solution was not found before. It may happen that the solver could not
find any feasible solution. To check this situation use the method solutionIsFeasible of the
OptimizationProblem, and raise an exception if a feasible solution was not found by the solver.

13.

14.

15.

7.1

Retrieve the primal solution obtained, and convert it into a DoubleMatriz2D object using the
method view2D.

Use the method of NetPlan called setRoutingFromDestinationLinkCarriedTraffic. This method
automatically creates the routes in the network that are consistent to what appears in the x4 2D
matrix retrieved. Since the formulation can create optimal solutions with loops (loops in links
with idle bandwidth, that do not cause the need of more capacity modules), set the option in
this method that automatically eliminates them.

Set the capacities of all the links in the netPlan design as the number of modules for that link
multiplied by the module capacity.

Check the algorithm

Load the network example7nodesWithTraffic.n2p. The algorithm should produce a solution with a
total of 200 capacity units installed in the network (20 modules) when the capacity module size is 10.

Reducing the capacity module size to 1, the total optimal capacity installed becomes 158.

Quiz 1. Why the total capacity installed is lower when we reduce the capacity module size?

8 Problem variations

Quiz 2. Modify the problem in (1) so now the cost of each capacity module is proportional to the link
length in km. Then, the new objective function becomes:

min E dele
e

where d. is the link lenght as returned by the method getLengthInKm() of the link object.

9 Matricial form of problem constraints (optional)

9.1

Flow conservation constraints

The flow conservation constraints in (1b) consist of one constraint per node n and one constraint per
destination node t (JNV|? constraints).

All the constraints can be represented by a single matricial equality as follows:

Ane X l’;e = Hst (2)

where:

e A, is the link incidence matrix. This is a [N x |€] matrix with one row per node, and one

column per link. Coordinate (n,e) is 1 if the link e is an outgoing link of n, -1 if it is an incoming
link to n, and 0 otherwise.

— The link incidence matrix can be obtained as an sparse matrix in Net2Plan using the method
of NetPlan class:

getMatrixNodeLinkIncidence

e 1y is a [N x |€] matrix, and z}, its transpose, with the decision variables.

e Hy is the |[N| x |[N] traffic matrix, with a slight modification: the (n,n) coordinates in the
diagonal contain the values — %" , hy/p,, so the sum of each column of Hy is zero.

9.2 Link capacity constraints - fractional case

The link capacity constraints in (1c) consists of one constraint per link (|€| constraints):

All the constraints can be represented by a single vectorial inequality as follows:
Z:Ete <Ca (3)
t

where:

®), T4 becomes now a 1 x |E| vector, with the carried traffic of each link (use the JOM command
sum over the first dimension of x_te for that).

e a represents the 1 x |€] vector with the number of modules to install per link.

Quiz 3. Rewrite the flow conservation and link capacity constraints using their matricial form.

10 Work at home after the lab work

The student is encouraged to complete all the Quizs that he/she could not finish during the lab session.

Bibliography

[1] P. Pavon Marino, “Optimization of computer networks. Modeling and algorithms. A hands-on ap-
proach”, Wiley 2016.

